다층 퍼셉트론 신경망을 활용한 우주발사체 위치 추정

한유수*, 이인수** *한국항공우주연구원 **경북대학교 IT대학 전자공학부 e-mail:yshan@kari.re.kr

Position Estimation of Space Launch Vehicle Using Neural Network with Multi-Layer Perceptron

Yoo-Soo Han^{*}, In-Soo Lee^{**} ^{*}Korea Aerospace Research Institute ^{**}College of IT Engineering, Kyungpook University

요 약

우주발사체 발사임무에서 발사체 추적 알고리즘으로 칼만필터가 많이 이용되고 있다. 칼만필터는 추적대상의 동역학 모델에 대한 사전지식을 바탕으로 시스템 모델을 만들어 이용하므로 시스템 모델이 부정확한 경우에는 추적 오차가 증 가할 수 있다. 우주발사체는 주로 다단으로 구성되며 단분리, 연료점화 및 연소종료 등의 비행이벤트에 따라서 구간별 동역학 특성이 달라지므로, 이러한 동역학 특성 변화가 있는 경우에도 보다 정확한 추적을 할 수 있도록 다중 시스템 모델을 사용하는 방법들에 대해서 많이 연구되어 왔다. 본 논문에서는 발사체의 비행특성을 다층 페셉트론 신경망을 통하여 구분하고 이에 따라 칼만필터의 프로세스 잡음 크기를 조정하는 방법을 제안하고 이에 대한 시뮬레이션 결과에 대해서 기술한다.

1. 서론

다단으로 구성되는 우주발사체는 각 단별 연료점화 및 연 소종료 이벤트에 따라서 추력이 발생하는 동력비행구간과 추 력이 없는 탄도비행구간을 거치게 된다. 이 과정에서 우주발 사체는 기동특성이 크게 변하게 되는데, 이러한 우주발사체 를 효과적으로 추적하기 위하여 기동특성이 다른 두 구간에 서 다른 시스템 모델을 사용하는 것을 고려해 볼 수 있다. 기 동표적 추적을 위한 적응형 추적 알고리즘으로 시스템 잡음 레벨을 조정하는 방법이나, 시스템 상태의 차원을 가변하는 방법 또는 다중모델을 이용하는 방법 등이 많이 연구되어 왔 다. 이러한 방법들에서는 잡음 레벨 조정이나 시스템 상태 차 수 변경 또는 모델 가중치 계산을 위해서 NIS(Normalized Innovation Squared) 계산과 모델확률 계산 등의 과정을 필요 로 한다. 본 논문에서는 우주발사체 추적센서의 측정값만을 이용하여 학습한 인공신경망을 통하여 우주발사체의 기동특 성이 다른 비행구간을 구분하고 이를 칼만필터의 시스템 잡 음 선택에 이용하는 방법에 대해서 제안하고 시뮬레이션 결 과를 기술한다. 표적 추적에 인공신경망을 이용하는 경우, 추 적데이터의 시계열데이터적인 특성을 고려하여 RNN (Recurrent Neural Network) 또는 LSTM(Long Short-Term Memory) 신경망을 이용하는 연구들이 있어 왔지만[1], 본 연 구에서는 일정시간 동안의 추적데이터를 이용하여 동력비행 구간 또는 탄도비행구간으로의 단순 분류만을 수행하므로 데 이터 분류에 적합한 다층 퍼셉트론 신경망을 이용하였다. 본 논문에서 제시한 방법에 대한 시뮬레이션에는 지난 나로호 (KSLV-I) 발사체의 기준궤적을 이용하였다.

2. 인공신경망을 이용한 칼만 필터 설정

2.1 다층 퍼셉트론 신경망 설계

본 논문에서는 한 대의 추적레이다로부터 표적의 궤적을 추적하는 것을 가정하였으며, 추적레이다로부터 취득된 거리 값을 인공신경망의 입력값으로 사용하였다. 입력값은 30번째 전부터 현재까지 총 30개의 입력값을 사용하였으며 해당값을 0과 1사이의 값으로 정규화하여 사용하였다. 출력 기준값(학 습 목표값)은 나로호 비행이벤트에 따라서 동력비행구간은 1, 탄도비행구간은 -1로 한 개의 값으로 설정하였다. 나로호 비 행이벤트에 따른 구간별 출력 기준값은 표 1에 정리하였다. 은닉층은 한 개 계층만을 사용하고, 총 100개의 퍼셉트론을 사용하였다. 출력함수로는 하이퍼탄젠트(tanh)를 사용하였다.

[표 1] 나로호 비행구간별 신경망 출력 기준값

비행이벤트	비행시간	거리	구간	
	(sec)	(km)	(신경망 출력 기준값)	
이륙	0.0	0	동력비행구간(1)	
최대 추력 도달	0.2	0		
음속돌파	54	0.8		
페어링 분리	215	245		
1단 엔진 정지	229	303		
1단 분리	232	316	탄도비행구간(-1)	
2단 점화	395	1052	동력비행구간(1)	
2단 연소종료	453	1390	탄도비행구간(-1)	
위성분리	540	2054		

2.2 칼만필터 모델 설정

추적레이다의 측정데이터가 입력되면 학습된 신경망을 통 하여 비행구간 분류를 할 수 있다. 이 결과에 따라 칼만필터 의 시스템 잡음 크기가 다르게 적용되도록 구성하였다. 시스 템 모델로는 등가속도 모델을 사용하였으며, 이에 대한 수식 은 식 (1)과 같다. 식 (1)에서 상태변수 *X*(*k*)는 XYZ 직교좌 표계의 한 축에 대한 *k*번째의 위치, 속도, 가속도를 나타낸다.

$$X(k+1) = FX(k) + w(k)$$
(1)
$$X(k) = \begin{bmatrix} x & \ddot{x} & \ddot{x} \end{bmatrix}', F = \begin{bmatrix} 1 & T & T^2/2 \\ 0 & 1 & T \\ 0 & 0 & 1 \end{bmatrix}$$

식 (1)에서 시스템 잡음 w(k)는 백색 가우시간 잡음으로 가 정하였으며 식 (2)와 같이 표현된다. 신경망을 통해 분류된 동력비행구간 또는 탄도비행구간에 따라서 q의 크기를 다르 게 설정하여 사용한다.

$$E[w(k)w(l)'] = Q\delta(k-l)$$

$$Q = q \begin{bmatrix} T^5/20 & T^4/8 & T^3/6 \\ T^4/8 & T^3/3 & T^2/2 \\ T^3/6 & T^2/2 & T \end{bmatrix}$$
(2)

측정모델은 극좌표계로 측정된 추적레이다 측정값을 직교좌 표로 unbiased 변환하여 사용하였다.

3. 시뮬레이션 결과 및 결론

제안한 방법의 성능을 확인하기 위하여 나로호의 기준궤적 에 가우시안 잡음을 추가하여 추적레이다의 측정데이터를 생 성하고 이를 다층 퍼셉트론 신경망으로 학습하여 비행구간을 분류하는 시뮬레이션을 진행하였다. 신경망 학습은 총 10,000 회를 수행하였으며, 학습된 신경망에 총 10,000회의 시험을 수행하여 구간 분류의 오차율을 측정하였다. 신경망의 출력 값이 0 이상인 경우에는 동력비행구간으로 0 미만인 경우에 는 탄도비행구간으로 분류하였으며, 이에 따른 전체 시뮬레 이션의 평균 오차율은 약 0.69%로 나타났다. 그림 1은 10,000 회 테스트 중 한 회의 테스트에 대한 결과를 샘플로 표현한 것이며, 거의 모든 구간에서 정확히 판단함을 볼 수 있다.

비행구간 분류 결과를 이용하여 동력비행구간에서는 식 (2) 의 q값을 10으로 탄도비행구간에서는 0.1로 설정하여 총 10,000회의 시뮬레이션을 수행하였으며, 성능 비교를 위하여 q값이 전 비행구간에서 0.1과 10으로 각각 고정 설정된 칼만 필터의 결과도 같이 분석하였다. 모의실험 결과는 그림 2 및 표 2와 같으며, 신경망 결과에 따른 가변 q를 적용하는 방식 이 평균적으로 오차율이 낮음을 볼 수 있다.

[그림 2] 추적 위치 오차 비교

[표 2] 추적 위치 오차 비교

~ 사 기 가	위치오차평균(최대값) (단위: m)				
<i>q</i> 절정값	Х	Y	Z	Total	
0.1	21.5	32.8	89.6	106.9	
(고정 설정)	(235.6)	(572.2)	(1109.5)	(1113.7)	
10	15.2	47.0	49.6	78.6	
(고정 설정)	(149.1)	(786.2)	(856.5)	(871.6)	
0.1 or 10	13.3	38.2	44.8	67.9	
(비행구간별 변경 설정)	(147.6)	(761.9)	(867.0)	(876.5)	

본 논문에서는 제안 방법으로 우주발사체의 비행구간 분류가 가능하고 상태 추정기 설계에 응용할 수 있음을 확인하였다.

참고문헌

 [1] 김동범, 정대교, 임재혁, 민사원, 문준, "불확정 표적 모델 에 대한 순환 신경망 기반 칼만 필터 설계", 한국군사과 학기술학회지, 제 26권 제1호, pp. 10-21, 2월, 2023년.