소형 선박에서 발생하는 대기오염물질 배출 특성

이선엽*, 김종범*, 황은영*, 윤수향*, 조민철*, 김아람*, 신우석*, 이상신* *충남연구원 서해안기후환경연구소 e-mail:sotte0024@cni.re.kr

Air pollutant emission characteristics from small ships

Seonyeop Lee*, Jong Bum Kim*, Eun Young Hwang*, Soo Hyang Yoon*, Min Cheol Cho*, A Ram Kim*, Woo Seok Shin*, Sang Sin Lee *Seohaean Research Institute, ChungNam Institute

요 약

충청남도는 한반도 서쪽에 위치하고 있어 해풍의 영향을 많이 받기 때문에 해양 기인 대기오염 배출량을 관리하는 것은 매우 중요하다. 특히 15개의 시·군 중 7개의 시군이 바다와 인접해 있어 해풍에 의해 내륙으로 들어오는 대기오염물질에 따른 지역 주민들의 피해가 우려 되고 있다. 본 연구에서는 소형 선박에서 발생하는 대기오염물질 배출 특성을 분석하여, 충청남도 대기질 관리 방안 마련의 기초 자료로 활용하고자 한다.

1. 서론

대한민국은 지리적으로 계절풍인 북서풍의 영향을 받는 것으로 알려져 있으며, 특히 충청남도는 서쪽에 위치해 있어 북서풍에 의한 해풍의 영향권 내에 위치하고 있다. 충청남도의 15개 시·군 중 태안, 당진, 서산 등 7개 시군이 바다와 인접해 있으며, 그 중 태안, 보령, 서천의 경우 약 4,000척에 달하는 선박이 운행 중에 있다(국립환경과학원, 2015). 2018년 기준 충청남도의 어선 등록현황에 따르면, 등록대 수 총 5,735척 중 10톤 이하의 소형 선박이 전체의 96%(5,486척)을 차지하고 있다. 선박에 의한 대기오염물질은 해양관리법에 따라 관리되고 있으며, SOx, NO, BC, VOCs 등이 그 대상이다(국립환경과학원, 2016). 본 연구에서는 충청남도 대기관리를 위해 관리대상 선박 중 전체의 96%를 차지하는 10톤 미만의 소형 선박에서 발생하는 대기오염물질의 배출특성을 분석하였다.

2. 연구방법

2.1 대상 선박 및 측정항목 선정

충청남도 통계 자료에 따르면, 시·군별 어선 등록대 수중 보령에 등록된 대수가 가장 많은 것으로 나타났고, 등록된 선 박의 약 88%가 소형어선으로 나타나 측정 대상을 보령 대천 항에 등록된 소형 어선으로 선정하였다. 선정된 선박은 동력 어선으로 2018년도에 전수된 7.93톤급 디젤 어선으로 전격용 량 497 마력, 길이×너비×깊이가 각각 12.87×3.42×0.89 m인 선박이다. 측정항목은 일반 대기오염물질처럼 공정시험방법이나 항목이 존재하지 않아 일반적인 이동오염원에 대한 관측항목인 입자상 오염물질, NOx, CO, CO₂, 유속(량), 압력, 온도등으로 선정하였다.

2.2 측정장비

입자상 오염물질은 FMPS(fast mobility particle sizer, model 3091, TSI)와 APS(aerodynamic particle sizer, model 3321, TSI)를 활용하여 배출가스의 입경분포 및 개수농도 특성을 분석하였고, DustTrak(model 8530, TSI)을 사용하여 PM₁₀과 PM₂₅의 중량농도를 분석을 하였다. 또한, PEA (portable emission analyzer, PG-250, HORIBA)를 활용하여 가스상 오염물질 중 NOx, CO, CO₂, O₂를 측정 하였다. 그밖에 토출구의 속도압, 유속등을 체크하기 위해 portable flue gas analyzer(model MK2, Greenline)와 MFM(mass flow meter, model 4100, TSI)을 활용하였다.

[표 1] 선박 배기가스 측정결과

장비명	측정항목	측정범위	
FMPS	입자 개수농도 및	5.6~560 nm	
APS	입경분포	0.5~20 μm	
DustTrak	입자 무게농도	PM ₁ , _{2.5} , ₁₀	
PEA	NOx, CO, CO ₂ , O ₂	NO ₂ :0~2,500 ppm CO:0~4,500 ppm	
MFM	유속, 압력, 온도		

[그림 1] 선박 대기오염물질 배출량 측정 모습

3. 연구결과

3.1 측정 결과

rpm이 가장 낮을 때 나노 범위(5.6~560nm)의 입자 개수농도 가 가장 높은 농도를 보였고. PN(0.5~20um)의 입자 개수농도는 rpm에 따라 농도변화를 보이지 않았으며, PM_{2.5} 농도는 1200rpm~1500rpm 부근에서 가장 높은 농도를 보였다. 또한, 개수농도와 NOx 농도는 1800rpm까지 증가하는 다시 감소하는 경향을 보였는데, 이는 선박에 부착된 엔진의 성능곡선과 일치하며, 배출특성 역시 엔진 부하특성에 따라 변화하는 것으로 판단된다.

[그림 2] 선박 배기가스 측정결과 [표 1] 부하변동에 따른 입자상 오염물질 변화

	PM _{2.5} (mg/m³)	PN(APS) (#/㎝)	PN(FMPS) (#/an²)
650rpm	1.0	326	9,956,129
950rpm	0.9	327	9,662,879
1200rpm	1.4	325	7,594,052
1400rpm	1.0	365	6,928,781
1500rpm	1.2	243	2,923,636
1700rpm	0.7	336	6,300,606
1900rpm	0.7	322	4,925,076
Break time	0.4	279	2,983,202

4. 결론

국가차원의 대기오염물질 저감을 위해 배출원들에 대한 인벤토리 구축과 개선대책 마련이 진행 중에 있다. 하지만 선박특히 소형 어선의 경우 관심의 사각지대에서 단순 연료사용량과 활동도 자료를 대상으로 배출량이 산정되고 있다. 하지만 본 연구결과 유럽의 자동차 배출가스 기주인 EURO 6 수준의 입자상 오염물질이 배출되고 있는 것으로 관측되었고,이러한 물질들은 별다른 저감장치 없이 대기 중으로 배출되고 있는 것을 확인 할 수 있었다. 향후 대기질 개선을 위해 소형 선박과 같은 관리 사각지대에 있는 배출원에 대한 인벤토리 구축과 현황 파악, 관리대책이 마련되어야 하며,이에 대한선행 과제로 소형 선박에 대한 상향식(Bottom-up) 연구가 선행되어야 할 것이다.

참고문헌

- [1] 국립환경과학원, 국내 연근해 선박에 의한 대기오염물질 및 온실가스 배출계수 개발과 배출량 산정(Ⅱ), 2015
- [2] 국립환경과학원, 국내 항만의 오염물질 배출량 산정 자료 집, 2016