PSCAD/EMTDC에 의한 태양광전원 연계용변압기의 결상사고용 보호장치 모델링에 관한 연구

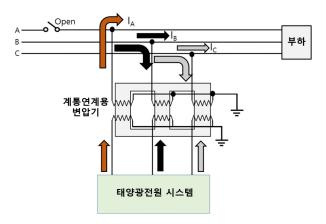
강갑석*, 노대석** *한국폴리텍대학, **한국기술교육대학교 e-mail: seok0826@kopo.ac.kr

A Study on Protection device modeling of Open Phase Fault in Distribution with PV System Based on PSCAD/EMTDC

Kab-Seok Kang*, Dea-Seok Rho**

*Korea Polytechnics, **Korea University of Technology and Education

요 약


최근, 에너지 고갈과 기후변화 문제로 인하여 태양광전원 등 신재생에너지 보급이 매년 증가되고 있다. 그러나, 태양광 전원이 설치된 배전선로의 단선 등으로 결상사고가 발생할 경우, 연계용 변압기의 철심형태 및 결선방법에 따라 여러 가지 문제점이 발생할 수 있다. 즉, 결상사고 발생 시, 결상된 상에도 전압이 유기되어 인버터의 단독운전방지기능이 작동하지 않아, 결상된 상에 계속하여 전력이 공급되고 계통에 악영향을 주는 사례 등이 보고되고 있다. 또한, 결상사고 발생 시 변압기의 철심형태 및 결선방법에 따라 결상된 상에 전원을 공급할 수 있어, 전압측정만으로 결상사고를 검출하 는 것은 매우 어렵다. 따라서, 본 논문에서는 이러한 현상을 해석하고 결상사고를 검출하기 위하여, PSCAD/EMTDC S/W를 이용하여 태양광전원, 인버터, 연계용변압기, 수용가부하로 구성된 배전계통과 결상사고 보호장치의 모델링을 수행한다. 상기의 모델링을 바탕으로 연계용변압기의 철심형태 및 결선방법에 따라 시뮬레이션을 수행한 결과, 결상시 에도 결상된 상에 전력이 공급되는 현상을 확인하고, 제안한 결상사고 보호장치가 결상검출 및 계통보호에 유용함을 확인하였다.

1. 서 론

최근 에너지 고갈과 기후변화 문제로 인하여 태양광전원 등 신재생에너지 보급이 매년 증가되고 있다. 그러나, 태양광 전원이 설치된 배전선로의 단선 등으로 결상사고가 발생할 경우 연계용변압기의 철심형태 및 결선방법에 따라 여러 가 지 문제점이 발생할 수 있다. 즉, 결상사고 발생 시 결상된 상 에 전압을 유기 시켜 인버터의 단독운전방지기능이 작동하지 않아 결상된 상에 전력을 공급하여 계통에 악영향을 주는 사 례, 연계용변압기를 통해 역조류 현상이 발생하여 변압기 과 부하 및 전력량계 계량오차 문제 등이 보고되고 있다. 또한, 결상사고 발생 시 변압기의 철심형태 및 결선방법에 따라 결 상된 상에 전원을 공급할 수 있어, 전압측정 만으로 결상사고 를 검출하는 것은 매우 어렵다. 따라서, 본 논문에서는 이런 해석하여 현상을 결상사고를 검출하기 위하여. PSCAD/EMTDC S/W를 이용하여 태양광전원, 인버터, 연계 용변압기, 수용가부하로 구성된 배전계통과 결상사고 보호장 치 모델링을 수행한다. 상기의 모델링을 바탕으로 연계용변 압기의 철심형태 및 결선방법에 따라 시뮬레이션을 수행한 결과, 결상사고 해석 및 결상검출에 유용함을 확인하였다.

2. 태양광전원 연계용변압기의 결상사고 특성

변압기의 구조는 크게 권선과 철심으로 구성되어 있으며, 권선의 결선방식과 철심 구조에 따라 특성이 다르게 나타나 고 있다. 특히, 태양광전원 연계용 변압기는 Y-△ 결선방식을 주로 사용하고, 일부는 Y-Y 결선방식을 사용하며, 철심구조 는 대부분 3각 철심 구조를 사용하고 있다. 이와 같이, 3각 철 심형태에 Y-△ 결선방식이나, Y-Y 결선방식을 사용할 경우 태양광전원이 연계된 배전계통에서 배전선로의 1상이 단선 되는 등의 결상사고가 발생하면, 태양광전원이 계통에서 분 리되어야 한다. 하지만, 그림 1과 같이 결상사고를 감지하지 못하고 계속 발전하는 현상(단독운전)과 계통연계용 변압기 의 역조류 현상으로 인해 배전선로의 결상된 상으로 전력을 공급하는 문제점이 발생할 수 있다[3]. 특히, 결상사고 발생 시 변압기의 철심형태 및 결선방법에 따라 결상된 상에 전원 을 공급할 수 있어, 전압측정만으로 결상사고를 검출하는 것 은 매우 어렵다. 따라서, 본 논문에서는 태양광전원 연계용변 압기의 결선방식과 철심구조에 따라 결상사고를 검출할 수 있는 결상사고 보호장치를 제안하고자 한다.



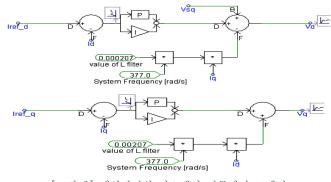
[그림 1] 계용연계용 변압기의 결상사고 특성

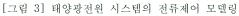
3. PSCAD/EMTDC를 이용한 결상사고용 보호장치의 모델링

3.1 연계용변압기의 결상사고 모델링

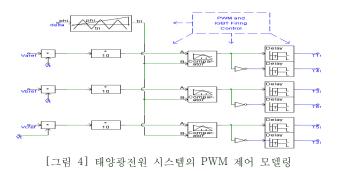
태양광전원이 연계된 배전계통에서 연계용변압기의 결선 방법 및 철심 구조별로 결상사고 특성을 분석하기 위하여, 배 전계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 모델링하면 그림 2와 같다. 여기서, 배전선로의 A상이 단선되 는 결상상태를 차단기(CB, circuit breaker)로 모의하고, 연계 용변압기 1차측 배전선로에는 3상부하가 연결된 것으로 나타 낸다. 또한, 연계용변압기는 PSCAD/EMTDC의 라이브러리 에서 제공하는 UMEC(unified magnetic equivalentcircuit) 모 델을 사용한다[1]. 이 모델에서는 3상 2권선 변압기로 결선방 법을 Y-Y, Y-△ 형태로 변경하여 해석할 수 있으며, 철심구 조를 3각 철심, 5각 철심, 단상 변압기의 형태로 변경하여 해 석할 수 있다.

[그림 2] 연계용변압기의 결상사고 모델링

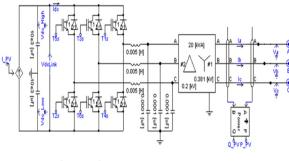

3.2 태양광전원 모델링


태양광전원의 계통연계용 인버터에 대하여 목표로 하는 유 효전력과 무효전력을 제어하기 위해, PI제어기를 이용한 세 부적인 전류제어 알고리즘은 식 (1)과 식 (2)와 같고, 이 제어 기를 모델링하면 그림 3과 같다. 여기서, 인버터의 전류 제어 부는 유효전력과 디커플링 회로이기 때문에 무효전력을 서로 독립적으로 제어할 수 있다.

$$V_d = (I_{ref-d} - I_d) \bullet (k_p + \frac{k_1}{s}) - I_q \bullet \omega L + V_{sq}$$
(1)

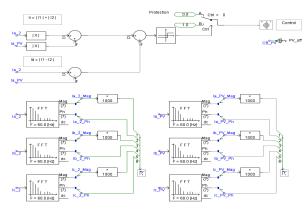

$$V_q = (I_{ref-q} - I_q) \cdot (k_p + \frac{k_1}{s}) - I_d \cdot \omega L$$
⁽²⁾

여기서, V_d , V_q : 인버터 출력을 위한 d-q축 전압, I_{ref-dq} : 인버터 출력의 기준전류, I_d , I_q : d-q동기좌표계에 의한 계통 전류(직류), V_{sq} : 계통의 순시전압



상기의 식 (1), (2)에서 구한 V_a 와 V_q 는 d-q 좌표변환을 통해 3상의 전압으로 변환되며, IGBT를 구동시키기 위한 6개의 신호로 사용되는 PWM을 모델링하면, 그림 4와 같이 나타낼 수 있다.

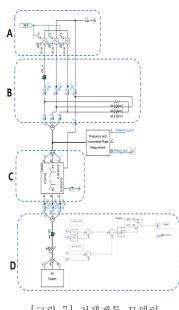
한편, 상기의 제어를 수행하는 계통연계용 인버터를 모델 링하면 그림 5와 같고, PWM으로부터 나온 6개의 스위칭 신 호에 의하여 태양광전원에서 생성된 DC 출력을 120°의 위상 차를 갖는 3상의 AC출력으로 변환시킨다.


[그림 5] 계통연계용 인버터 모델링

3.3 결상사고 보호장치 모델링

결상사고 시, 결상된 상에 전력이 공급되는 문제점을 방지 하기 위해 이를 감지할 수 있는 결상사고 보호장치의 세부적 인 동작 알고리즘은 식 (3)과 같고, 식 (3)에서 연계용변압기 1차측 및 2차측 전류의 크기와 위상을 이용해 계산되는 비율 이 일정값 이상이면 결상사고로 인지하고 신호를 차단기와 인버터에 전달할 수 있으며, 이 보호장치를 모델링하면 그림 6과 같다.

$$ratio = \frac{|I_1 - I_2|}{|I_1| + |I_2|} \times 100 \,[\%]$$
(3)


여기서, I1: 변압기 1차측 전류, I2: 변압기 2차측 전류

[그림 6] 결상사고 보호장치 모델링

3.4 전체계통 모델링

상기의 내용을 바탕으로 태양광전원이 연계된 전체 배전계 통을 모델링하면 그림 7과 같다. 여기서, 그림 7의 A부분은 배전용 변전소, B부분은 고압 배전선로 및 수용가부하, C부 분은 태양광전원의 연계용변압기 그리고 D부분은 태양광전 원 및 인버터와 결상사고 보호장치를 나타낸 것이다.

[그림 7] 전체계통 모델링

4. 시뮬레이션 결과 및 분석

4.1 시뮬레이션 조건

본 논문에서 제안한 태양광전원이 연계된 배전계통에서 연 계용변압기의 결선방법 및 철심 구조별로 결상사고 특성을 분석하기 위하여, 각 구성요소의 시험 조건은 표 1과 같이 상 정한다. 표 1에서 3각 철심 및 5각 철심 변압기는 3상 3kVA 를 사용하고, 단상변압기는 1kVA 3대로 3상 결선하여 사용 한다. 구체적으로 결상사고는 A상이 단선 된 경우로 상정하 며, 3상 부하는 연계용변압기 1차측 배전선로에 각상과 중성 선에 접속하여 시험을 수행한다.

[표 1] 결상사고 시뮬레이션 조건

	구분	3각 철심	5각 철심	단상변압기
	상수	3상	3상	단상
	변압기용량[kVA]	3kVA × 1대	3kVA × 1대	1kVA × 3대
	주파수[Hz]	60	60	60
	변압비	1:1	1:1	1:1
ſ	부하용량[W]	2,400	2,400	2,400

또한 결상사고 보호장치는 변압기 1, 2차 전류 및 위상을 확인하여 식 (3)으로 계산된 비율이 30[%] 이상일 경우 결상 사고로 인지하고 동작하도록 설정하여 시험을 수행한다.

4.2 결상사고 보호장치 특성 분석

(1) Y-Y 결선 변압기의 결상사고 보호장치 특성 분석 연계용변압기 결선방법이 Y-Y 결선인 경우, 변압기의 1차
측 A상이 단선되는 결상사고 보호장치 특성을 나타내면 표 2와 같다. 여기서, 표 2의 (a)는 전압 유기 특성을 나타내고 있
으며, 변압기가 5각 철심과 단상변압기의 경우, TR 1, 2차측 모두 0[V]로 전압이 유기되지 않아 전압 측정으로 결상사고 검출이 가능함을 알 수 있으나, 3각 철심인 경우에는 결상된 A상 TR 1, 2차측 모두 219[°]220[V] 전압이 유기되어 전압 측 정으로 결상사고를 검출할 수 없음을 알 수 있었다. 또한, 표 2의 (b)는 보호장치 동작 특성을 나타내고 있으며, 변압기가 3각 철심인 경우에는 결상된 A상에 3.6∠-3°[A]의 전류를 공 급하며, 제안한 결상사고 보호장치의 설정값인 30[%]를 초과 하여 결상검출이 가능함을 알 수 있었다. 즉 Y-Y 결선의 5각 철심 변압기는 전압측정으로 결상사고 보호가 가능하나, 3각 철심 변압기는 전압측정으로 결상사고를 검출할 수 없으며, 제안한 결상사고 보호장치를 이용하여 결상사고를 검출하여 야함을 알 수 있었다.

[표 2] Y-Y 결선 변압기의 결상사고 보호장치 특성 (a) 전압 유기 특성

71		3각 철심		5각 철심 / 단상변압기		
구분	A-N	B-N	C-N	a-n	b-n	c-n
TR1차 [V]	219	220	220	0	220	220
TR2차[V]	220	218	221	0	220	220

(0) 포조 3시 3 4 4 3						
구분	3각 철심			5각 철심 / 단상변압기		
ΥT	A상	B상	C상	A상	B상	C상
TR1차 [A]		1.96∠-67°	1.54∠60°	0	0	0
TR2ネ} 〔A〕	1.82∠6°	1.76∠-126°	1.97∠120°	0	0	0
$ \mathbf{I}_1 + \mathbf{I}_2 $	5.42	3.72	3.51	I	Ι	-
$ I_1 - I_2 $	5.4	3.25	3.03	-	-	-
비율	99.6	87.3	86.3	1	I	-
동작 유무	동작	동작	동작	_	_	-

(b) 보호장치 동작 특성

(2) Y-△ 결선 변압기의 결상사고 보호장치 특성 분석 연계용변압기 결선방법이 Y-△ 결선인 경우, 결상 사고 특 성 및 보호장치 동작을 나타내면 표 3과 같다. 여기서, 표 3의
(a)는 전압 유기 특성을 나타내고 있으며, 변압기 철심구조와 상관없이 결상된 A상에 TR 1, 2차측 모두 216~219[V] 전압이 유기되어 전압측정으로 결상사고를 검출할 수 없음을 알 수 있었다. 또한, 표 2의 (b)는 보호장치 동작 특성을 나타내고 있으며, 변압기가 3각 철심인 경우에는 결상된 A상에 3.6∠ -3°[A]의 전류를 공급하며, 3각 철심인 경우에는 3.61∠
-3°[A]의 전류를 공급하고 있어, 제안한 결상사고 보호장치 의 설정값인 30[%]를 초과하여 결상검출이 가능함을 알 수 있었다. 즉 Y-△ 결선일 경우 철심구조와 상관없이 전압측정 으로 결상사고를 검출할 수 없으며, 제안한 결상사고 보호장 치를 이용하여 결상사고를 검출하여야함을 알 수 있었다.

[표 3] Y-△ 결선 변압기의 결상사고 보호장치 특성 (a) 전압 특성

구분	3각 철심			5각 철심 / 단상변압기		
イモ	A-N	B-N	C-N	a-n/a-b	b-n/b-c	c-n/c-a
TR1차 [V]	219	220	220	218	220	220
TR2차[V]	217	222	219	216	222	219

(b) 보호장치 동작 특성

구분		3각 철심		5각 철심 / 단상변압기		
ㅜ군	A상	B상	C상	A상	B상	C상
TR1차 [A]	3.63∠-3°	1.89∠-62°	1.72∠59°	3.61∠-3°	2.02∠-65°	1.6∠56°
TR2차 [A]	3.14∠-30°	3.15∠-150°	3.13∠90°	3.1∠-30°	3.19∠-150°	3.16∠90°
$ I_1 + I_2 $	5.44	3.71	3.53	5.4	3.86	3.42
$ I_1 - I_2 $	1.82	1.80	1.79	1.83	1.79	1.82
비율	33.5	48.5	50.7	33.8	46.3	53.3
동작 유무	동작	동작	동작	동작	동작	동작

5. 결 론

본 논문에서는 태양광전원이 설치된 배전선로의 단선 등으 로 결상사고가 발생할 경우, 결상사고 특성을 분석하고 결상 사고 검출방안을 제시하기 위하여, PSCAD/EMTDC를 이용 하여 태양광전원, 인버터, 연계용변압기, 수용가부하로 구성 된 배전계통과 결상사고 보호장치 모델링을 수행하고, 이를 바탕으로 분석한 연구결과를 요약하면 다음과 같다.

(1) 태양광전원이 연계된 배전계통에서 결상사고가 발생하 면, 연계용변압기가 5각 철심 및 단상변압기 타입의 Y-Y결 선만 태양광인버터가 결상을 감지하고, 정지하여 전압 및 전 류를 공급하지 않음을 알 수 있었다.

(2) 결상사고 발생 시 전기적인 특성 및 인버터 단독운전 방지 차원으로 평가하면, 태양광전원 연계용변압기는 Y-Y결 선방식의 5각 철심구조가 결상사고 운용에 가장 효율적임을 알 수 있었다.

(3) 제안한 결상사고 보호장치가 결상사고 검출에 유용함 을 확인할 수 있었으며, 향후에는 보호장치의 안정성 및 오동 작 가능성 등에 관한 연구를 진행할 예정이다.

감사의 글	
	감사의 글
본 연구는 2020년도 중소벤처기업부의 기술개발사업 지	본 연구는 2020년도 중소벤처기업부의 기술개발사업 지
원에 의한 연구임. [S2854105]	원에 의한 연구임. [S2854105]

참고문헌

- 장수형, "전력변환장치 기반 분산전원이 도입된 배전계통
 의 새로운 보호방식", 충북대학교 학위논문, 2017년.
- [2] 신동열, 하복남, 정원욱, 차한주, "배전계통에서 변압기 결 선에 의한 역 조류 현상에 관한 연구", 조명설비학회논문 지 제22권 제9호, pp. 111-119, 2008년.
- [3] 강갑석, 이후동, 태동현, 노대석, "PSCAD/ EMTDC 의한 태양광전원 연계용변압기의 결상사고 특성 분석"대한 전기학회논문지, 제69권 제2호, pp. 225-234, 2020년.